
﻿

IVI Instrument Driver
Programming Guide
(LabVIEW Edition)
March 2019 Revision 2.2

Product names and company names that appear in this guide are the trademarks or registered
trademarks of their respective companies.
© 2019 Kikusui Electronics Corp.

KIKUSUI Electronics Corp.2

Contents

Contents

Introduction... 3

IVI Instrument Driver Available for LabVIEW.. 3

Usable Interfaces... 4

Programming Using Specific Interfaces.. 5

Preparing to Use Specific Interfaces.. 5

Installing the LabVIEW Instrument Driver Import Wizard....................................... 5

Installing the IVI Compliance Package.. 5

Importing the IVI-C Driver.. 6

Configuring the Program.. 13

Adding Functions... 13

Setting Parameters.. 16

Executing the Program.. 18

Function Descriptions... 19

Starting the Session... 19

Setting the Channel Name... 22

Closing the Session... 23

Programming Using Class Interfaces... 24

Configuring the Program.. 24

Creating a Virtual Instrument... 24

Adding Functions... 30

Setting Parameters.. 33

Function Descriptions... 35

Starting the Session... 35

Setting the Channel Name... 37

Closing the Session... 38

Switching the Instrument.. 39

Introduction

IVI Instrument Driver Programming Guide (LabVIEW Edition) 3

Introduction

Introduction
This guide shows examples of using the KikusuiPwr IVI instrument driver (KIKUSUI PWR-
01 Series DC power supply).
You can also use the IVI instrument driver for other manufacturers and models in a similar
way.

This guide describes how to use LabVIEW 2018 (64-bit version) to create 64-bit (x64) pro-
grams that run on Windows10 (x64).

IVI Instrument Driver Available for LabVIEW

With LabVIEW, you can import the IVI-C instrument driver to perform programming.
The IVI-C instrument driver enables easier programming.

This guide recommends the IVI-C instrument driver and uses it in examples to explain pro-
gramming procedures.

Memo
Our IVI instrument drivers include both IVI-C and IVI-COM drivers. You can use the IVI-
COM instrument driver directly as a general COM component.

KIKUSUI Electronics Corp.4

Introduction

Usable Interfaces

The IVI instrument driver supports the following two types of interfaces:

•	Specific interfaces
Interfaces that are specific to their instrument drivers. You can fully utilize the instrument’s
features.

•	Class interfaces
Interfaces for the instrument classes defined in the IVI specifications.
You can use the interchangeability feature, but the use of model-specific features is
restricted.

This guide describes how to perform programming using each interface.

Memo
•	The instrument class to which an instrument driver belongs is documented in Readme.
txt for each driver.
The Readme document can be viewed from [Start] button > [Kikusui] > [KikusuiPwr IVI
Driver 1.0.0 Documentation] menu.

•	If the instrument driver does not belong to any instrument classes, you cannot use
class interfaces and therefore cannot create applications that use the interchangeability
feature.

Programming Using Specific Interfaces

IVI Instrument Driver Programming Guide (LabVIEW Edition) 5

Programming Using Specific Interfaces

Programming Using Specific Interfaces
By using a specific interface, you can fully utilize the model-specific features of the instru-
ment driver.

This section describes how to program using specific interfaces.

Preparing to Use Specific Interfaces

Installing the LabVIEW Instrument Driver Import Wizard

To write codes that call the IVI-C instrument driver in LabVIEW, use the LabVIEW
Instrument Driver Import Wizard to import the IVI-C driver, and create the LabVIEW VI
library (LabVIEW IVI-C wrapper).

Download and install the LabVIEW Instrument Driver Import Wizard from the National
Instruments website in advance.

Installing the IVI Compliance Package

To implement the LabVIEW IVI-C wrapper created by the Import Wizard, the IVI Compliance
Package is required for the runtime environment.

Download and install the IVI Compliance Package from the National Instruments website in
advance.

Memo
When using specific interfaces, you cannot use the interchangeability feature. To use the
interchangeability feature, use class interfaces. (go to page 24)

KIKUSUI Electronics Corp.6

Programming Using Specific Interfaces

Importing the IVI-C Driver

To program using specific interfaces, the IVI-C driver must be converted to a LabVIEW-
compatible format and imported.

To import the IVI-C driver, use the LabVIEW Instrument Driver Import Wizard (go to
page 5).

1	 Once the Instrument Driver Import Wizard is installed, launch LabVIEW.

2	 Select [Tools] > [Instrumentation] > [Import LabWindows/CVI Instrument
Driver] from the menu.

3	 Select [Advanced] and click [Next >].

Programming Using Specific Interfaces

IVI Instrument Driver Programming Guide (LabVIEW Edition) 7

Programming Using Specific Interfaces

4	 Specify the .fp (function panel) file of the IVI instrument driver under
[Function Panel (.fp) File] and click [Next >].
In this example, kipwr.fp is specified for using the KikusuiPwr IVI instrument driver.
kipwr.fp is stored in the following directory:
C:/Program Files/IVI Foundation/IVI/Drivers/kipwr

The .h file (C-language header file) and the .sub file (attribute information file) are
automatically specified.

KIKUSUI Electronics Corp.8

Programming Using Specific Interfaces

5	 Make sure that all items for the file types to be generated are selected,
and click [Next >].

6	 Set each item.

Programming Using Specific Interfaces

IVI Instrument Driver Programming Guide (LabVIEW Edition) 9

Programming Using Specific Interfaces

Setting Item Description

[Driver Group] Specifies the instrument class that the IVI instrument
driver belongs to. In this example, the IviDCPwr class
(IVI DC power supply) is specified.

If the IVI instrument driver to be imported does not
belong to any class, select [IVI Generic].

[Driver Prefix] Confirms that the .fp file selected in Step 4 is
specified.

[Legal Copyright] Sets the copyright notice to be included in the instru-
ment driver.
In this example, the field is left blank.

[Shared Library or DLL] Specifies the DLL file for the driver.
In this example, [kipwr.dll] stored in the following
directory is specified.

C:/ProgramFiles/IVI Foundation/IVI/BIN

A file name using wildcards is entered by default.
Specify the correct DLL file.

KIKUSUI Electronics Corp.10

Programming Using Specific Interfaces

7	 Click [Next >].
The function tree screen appears.

8	 Select the VIs to be generated and click [Next >].
Normally, you do not need to change these settings.

Memo
•	If [Shared Library or DLL] is specified incorrectly, the following dialog box is dis-
played.
Click [×] to close the dialog box, and specify another DLL file or check the installa-
tion status of the IVI instrument driver again.

Programming Using Specific Interfaces

IVI Instrument Driver Programming Guide (LabVIEW Edition) 11

Programming Using Specific Interfaces

9	 Click [Next >].
The screen for changing the memory size used for the VI is displayed, but normally,
you do not need to change these settings.

10	 Specify the conversion tasks for documents (mainly context and help)
and click [Next >].
Most documentation conversions replace “Function” with “VI.”
This guide recommends that you uncheck [Show prompts] to avoid displaying a confir-
mation prompt for every conversion, as these have low importance.

An outline of the conversion tasks appears.

KIKUSUI Electronics Corp.12

Programming Using Specific Interfaces

11	 Click [Next >].
Conversion starts. When the conversion is complete, the IVI instrument driver sub-
directory (in this example, the kipwr subdirectory) is created in the LabVIEW default
instrument driver directory, and an IVI-C wrapper that can be used directly from
LabVIEW is created.

The kipwr IVI-C wrapper can be referenced from the Instrument I/O function palette on
the LabVIEW block diagram.

Memo
•	In general, the default instrument driver directory for LabVIEW is the following:
C:/Program Files/National Instruments/LabVIEW 2018/instr.lib

•	The IVI-C wrapper is created as a file set that includes a VI library file (.llb) and
multiple palette menu files (.mnu).

•	The created .llb file is not a real instance of the instrument driver, but is instead a
wrapper module to the IVI-C driver.
Therefore, the IVI instrument driver must be installed on the target machine when
you run the completed application.

•	When installing the IVI instrument driver on the target machine, use the driver’s
installer, the same as installing to the development machine.
Just copying DLL or other pieces of data does not work correctly.

•	On the target machine, the IVI Compliance Package must be installed in addition
to the LabVIEW Runtime Engine.

Programming Using Specific Interfaces

IVI Instrument Driver Programming Guide (LabVIEW Edition) 13

Programming Using Specific Interfaces

Configuring the Program

Adding Functions

This section describes how to add functions using specific interfaces. This example adds
functions for voltage, current, and output.

1	 Display the Front Panel screen, and place the [error in] cluster and the
[error out] cluster.

2	 Display the Block Diagram screen and right-click. Select [Instrument I/O] >
[Instr Drivers] > [kipwr] to open the kipwr function palette.

KIKUSUI Electronics Corp.14

Programming Using Specific Interfaces

3	 Add the following VIs to the Block Diagram screen:

•	Kipwr Initialize With Options.vi

•	Kipwr Close.vi

Programming Using Specific Interfaces

IVI Instrument Driver Programming Guide (LabVIEW Edition) 15

Programming Using Specific Interfaces

4	 Open the [Configuration] palette and add the following VIs.

Parameter VI

Parameter to set voltage Configure Voltage Level.vi

Parameter to set current Configure Current Limit.vi

Parameter to set output Configure Output Enabled.vi

Then, set parameters to the added functions.

KIKUSUI Electronics Corp.16

Programming Using Specific Interfaces

Setting Parameters

This section describes how to set parameters to the added functions to configure the pro-
gram. It shows an example of setting the voltage to 20 V and the current to 2 A to turn on
the output.

The following explanation describes an example of setting parameters for the Kikusui PWR-
01 Series DC power supply on a network that is set to the IP address 192.168.1.5.

1	 Bridge the parameters of [resource name], [ID Query], and [Reset Device]
to [Initialize With Options.vi].

2	 Add parameters that set voltage, current, and output to each VI.

3	 Bridge the character string of the DC power supply channel name to be
controlled to the same three VIs as in Step 2 on a shared line.
In this example, a blank string is set as a channel name.

A blank string can be used when there is only one channel.
For the details on the channel names that can actually be used, refer to the driver’s
online help or other resources.

Programming Using Specific Interfaces

IVI Instrument Driver Programming Guide (LabVIEW Edition) 17

Programming Using Specific Interfaces

4	 Connect the [error in] cluster to the [error out] cluster by wire, and con-
nect the instrument session (handle).

Handle

Wire

KIKUSUI Electronics Corp.18

Programming Using Specific Interfaces

Executing the Program

You can execute the program even with the configuration that has been set to this point.

The [Reset Device] parameter in Initialize With Options.vi is specified as “TRUE” by default.
Therefore, when the program is executed, the instrument is reset and then communication
starts.

For the details on functions and parameters, refer to “Function Descriptions” (go to
page 19).

•	If the error code of the [error out] cluster displays “0” when the measurement instrument is
actually connected, then [Initialize With Options] and [Close] have been successful.

•	If communication failed, the VISA library was not set correctly, or another problem trans-
pired, an exception occurs and is displayed in the [error out] cluster.
Right-click the [error out] cluster and select [Explain Error] to check the details.

Programming Using Specific Interfaces

IVI Instrument Driver Programming Guide (LabVIEW Edition) 19

Programming Using Specific Interfaces

Function Descriptions

This section describes the details and settings of the functions (VIs) that configure the
program.

Starting the Session

To start the session, use Initialize With Options.vi.

Initialize With Options.vi, which is defined in the IVI specifications, is included in all IVI
instrument drivers.

Memo
The term <prefix> is frequently used as a convention of function names in IVI-C and VXI
Plug&Play instrument drivers. It indicates the identifier name given to each instrument
driver.
For example, the expression “<prefix> Initialize.vi” becomes “kipwr Initialize.vi” for the
kipwr instrument driver.

KIKUSUI Electronics Corp.20

Programming Using Specific Interfaces

The following parameters can be set for kipwr Initialize With Options.vi.

Parameter Type Description

resource name String VISA resource name string decided according to the
I/O interface and address through which the instru-
ment is connected.
For example, if an instrument with the IP address
192.168.1.5 is connected through VXI-11, the resource
name will be “TCPIP::192.168.1.5::INSTR”.

ID Query Boolean Specifying VI_TRUE issues an ID query such as
“*IDN?” to the instrument to inquire on the model
information.

Reset Device Boolean Specifying VI_TRUE issues a command, such as the
“*RST” command, to reset the instrument settings.

Option String String RangeCheck
Cache
Simulate
QueryInstrStatus
RecordCoercions
InterchangeCheck
Changes the abovementioned settings defined in the
IVI specifications.
If the [DriverSetup] parameter is supported by the
instrument driver being used, this parameter can also
be set.

Programming Using Specific Interfaces

IVI Instrument Driver Programming Guide (LabVIEW Edition) 21

Programming Using Specific Interfaces

For Setting the Option String

Set the Option String as explained below:

•	Option String is a string parameter. When setting multiple items, use commas to separate
them.
Set the parameter in the same format as the following sample string:
QueryInstrStatus=TRUE, Cache=TRUE, DriverSetup=12345

•	Function names and setting values are not case-sensitive. Uppercase and lowercase
characters are not distinguished.

•	The setting values are ViBoolean type. Any from “VI_TRUE,” “VI_FALSE,” “1,” or “0” can
be specified.

•	If an item is not explicitly specified, the following default values defined in the IVI specifica-
tions are applied:

	– [RangeCheck] and [Cache]: VI_TRUE

	– Other than [RangeCheck] and [Cache]: VI_FALSE

•	Some instrument drivers do not support the [DriverSetup] parameter.
The [DriverSetup] parameter is specified to call an item that is not defined in the IVI speci-
fications when calling Initialize With Options.vi. Its purpose and format are driver-specific.
Therefore, [DriverSetup] must be specified as the last item in [Option String]. For details
on the [DriverSetup] parameter, refer to the driver’s Readme document, online help, or
other resources.

Memo
•	Every VI (driver function) except for “<prefix> Initialize.vi” and “<prefix> Initialize With
Options.vi” has the [instrument handle (in)] parameter at the upper-left corner of the VI.

•	Every VI (driver function) except for “<prefix> Close.vi” has the [instrument handle out]
parameter at the upper-right corner of the VI.
This output parameter connects to [instrument handle (in)] of the next VI.

•	“<prefix> Initialize.vi” is left for compatibility with the VXI Plug&Play driver specifica-
tions. It is equivalent to “<prefix> Initialize With Options.vi,” with the exception that the
[Option string] parameter cannot be specified.

KIKUSUI Electronics Corp.22

Programming Using Specific Interfaces

Setting the Channel Name

The IVI instrument driver was designed on the premise that, when supporting power sup-
plies, oscilloscopes, and so on, the instrument has multiple channels.

Therefore, many driver functions that operate instrument panel settings may require you to
specify the channel for the [Channel Name] parameter.

For example, the KikusuiPwr (kipwr) driver used as an example in this guide is a DC power
supply driver.
Specify a channel name to be controlled.

The channel names that can actually be used differs depending on the driver. For details on
this setting, refer to the driver’s Readme document, online help, or other resources.

Memo
•	If there is only one channel, operation is possible even when the specified channel
name is a blank string (“”).

•	If multiple channels exist, you must specify the channel names to be used. In general,
“Output1” is specified for a power supply.

•	If you operate PWR-01 Series with the multidrop extension, channel numbers are
assigned sequentially from zero. Therefore, the first channel name will be “Output0.”

Programming Using Specific Interfaces

IVI Instrument Driver Programming Guide (LabVIEW Edition) 23

Programming Using Specific Interfaces

Closing the Session

To close the instrument driver’s session, use Close.vi.

KIKUSUI Electronics Corp.24

Programming Using Class Interfaces

Programming Using Class Interfaces
Programming using an IVI-defined instrument class interface enables interchangeability
using an instrument class driver.
Interchangeability allows you to switch instruments without having to recompile and link the
application.

Configuring the Program

Creating a Virtual Instrument

To create an application that uses the interchangeability feature, you must create a virtual
instrument in advance.

The IVI specifications provide an interchangeability feature by placing the IVI Configuration
Store outside of the instrument driver and application.
Applications do not directly use model-specific instrument drivers, but instead they control
through special instrument drivers called instrument class drivers.

Memo
•	To use interchangeability, the IVI-C instrument drivers must be provided for the models
both before and after switching, and these drivers must belong to the same instrument
class. Interchangeability is not possible between different instrument classes.

•	For programming that uses class interfaces, the model-specific features that can be
used are restricted. To fully utilize model-specific features, perform programing with
specific interfaces. (go to page 5)

Memo
Do not use descriptions that are dependent on a specific IVI-C instrument driver (e.g. a
direct call of the kipwr_init function) or descriptions of a specific VISA address (resource
name, e.g. “TCPIP::192.168.1.5::INSTR”) in the application code, because doing so will
spoil the interchangeability feature.

Programming Using Class Interfaces

IVI Instrument Driver Programming Guide (LabVIEW Edition) 25

Programming Using Class Interfaces

For control, select the instrument driver’s DLL according to the contents of the IVI
Configuration Store, and use the class driver function, which is not model-affiliated, to
access the instrument driver that was loaded indirectly.

An XML file (C:/ProgramData/IVI Foundation/IVI/IviConfigurationStore.xml) is used for the
IVI Configuration Store. IVI instrument drivers and some VISA/IVI configuration tools access
the store through the IVI Configuration Server DLL. Applications do not normally use it.
When using LabWindows/CVI, use the NI-MAX (NI Measurement and Automation Explorer)
software provided by National Instruments to perform IVI driver configuration.

This section describes how to create virtual instruments using NI-MAX.

1	 First, create a Driver Session. Launch NI-MAX and expand the [IVI Drivers]
node on the tree.

2	 Right-click [Driver Session] and select [Create New (case-sensitive)].

3	 Specify a name for the Driver Session.
Here, it is [mySupply].

KIKUSUI Electronics Corp.26

Programming Using Class Interfaces

4	 Next, create a Hardware Asset. Select the [Hardware] tab.

5	 Click [Add] to create a new Hardware Asset.

6	 Specify a name for the Hardware Asset.
Here, it is [mySupply].

7	 For [Resource Descriptor], specify the VISA address to which the desired
instrument is connected.
In this example, “TCPIP::192.168.1.5::inst0::INSTR” is specified.

Memo
Hardware Asset shows to which path the target instrument is connected.

Programming Using Class Interfaces

IVI Instrument Driver Programming Guide (LabVIEW Edition) 27

Programming Using Class Interfaces

8	 Next, set the Software Module link. Select the [Software] tab.

9	 Select the desired instrument driver module from the [Software Module]
list.

In this example, [kipwr] is selected.

10	 Next, create a Virtual Name. Select the [Virtual Names] tab.

Memo
Software Module shows the instrument driver module (DLL module).

Memo
For instrument drivers that require the specification of channels, valid channel
names differ depending on the instrument driver.
Therefore, set the virtualization of these channel names in the Virtual Name tab.

KIKUSUI Electronics Corp.28

Programming Using Class Interfaces

11	 Click [Add] to add a virtual name, and enter [Track_A] for [Virtual Name].
The [Physical Name] list displays the channels on which the instrument operates.

12	 Select a channel name that is displayed on the [Physical Name] list, or
enter a valid channel name.
For this example, select [IviDcpwrChannel!!Output0] or enter [Output0].

Memo
Depending on the driver’s implementation status or the configuration of multi-chan-
nel power supplies, not all of the channel names may be shown.
For the valid channel names for drivers, refer to the driver’s Readme document,
online help, or other resource.

Programming Using Class Interfaces

IVI Instrument Driver Programming Guide (LabVIEW Edition) 29

Programming Using Class Interfaces

13	 Finally, create a Logical Name to set a link. Expand the [IVI Drivers] node
in the tree on the left side of the screen.

14	 Right-click [Logical Name] and select [Create New (case-sensitive)].

15	 Specify a name for Logical Name.
Here, it is [mySupply].

16	 Select [mySupply] for [Driver Session].

17	 Click [Save IVI Configuration] on the tool bar to save the setting.

The creation of a virtual instrument is complete.

Memo
The Logical Name is equivalent to the name of the virtual instrument configured
with NI-MAX.

KIKUSUI Electronics Corp.30

Programming Using Class Interfaces

Adding Functions

This section describes how to add functions using class interfaces. This example adds func-
tions for voltage, current, and output.

1	 Display the Front Panel screen, and place the [error in] cluster and the
[error out] cluster.

2	 Display the Block Diagram screen and right-click. Select [Instrument I/O] >
[IVI Class Drivers] > [DC Power Supply] to open the IviDCPwr function
palette.

Memo
When the IVI Class Drivers palette is not found, the appropriate version of the IVI
Compliance Package may not be installed.

Programming Using Class Interfaces

IVI Instrument Driver Programming Guide (LabVIEW Edition) 31

Programming Using Class Interfaces

3	 Add the following VIs to the Block Diagram screen:

•	Initialize W/Opt (Initialize With Options.vi)

•	Close (Close.vi)

KIKUSUI Electronics Corp.32

Programming Using Class Interfaces

4	 Open the [Configuration] palette and add the following.

Parameter VI

Parameter to set voltage Configure Voltage Level.vi

Parameter to set current Configure Current Limit.vi

Parameter to set output Configure Output Enabled.vi

Then, set parameters to the added functions.

Programming Using Class Interfaces

IVI Instrument Driver Programming Guide (LabVIEW Edition) 33

Programming Using Class Interfaces

Setting Parameters

This section describes how to set parameters to the added functions to configure the pro-
gram. It shows an example of setting the voltage to 20 V and the current to 2 A to turn on
the output.

1	 Bridge the [id query] and [reset device] parameters to Initialize With
Options.vi, and specify the logical name of the virtual instrument speci-
fied for [logical name] using NI-MAX.
In Initialize With Options.vi for class drivers, specify a virtual instrument (IVI logical
name) instead of a VISA resource name (VISA address).

In this example, [mySupply] is used.

2	 Add parameters that set voltage, current, and output to each VI.

3	 Bridge the character string of the DC power supply channel name to be
controlled to the same three VIs as in Step 2 on a shared line.
For programming using class drivers, specify the virtual name of the channel that is
specified for the virtual instrument. In this example, [Track_A] is the channel name.

KIKUSUI Electronics Corp.34

Programming Using Class Interfaces

4	 Connect the [error in] cluster to the [error out] cluster by wire, and con-
nect the instrument session (handle).

Handle

Wire

Programming Using Class Interfaces

IVI Instrument Driver Programming Guide (LabVIEW Edition) 35

Programming Using Class Interfaces

Function Descriptions

This section describes the details and settings of the functions (VIs) that configure the
program.

Starting the Session

To start the session with class drivers, use Initialize With Options.vi.

This example uses the IviDCPwr class driver. “IviDCPwr,” as prefix to be added to VIs (func-
tions), is specific to the IviDCPwr class driver.

Memo
Programs that use class drivers do not depend on instrument drivers of specific models
such as kipwr (our PWR-01 Series DC power supply) and AgN57xx (N5700 Series DC
power supply manufactured by Agilent).

KIKUSUI Electronics Corp.36

Programming Using Class Interfaces

•	With class drivers, you cannot directly bridge a VISA address to Initialize With Options.vi.
Specify the logical name of the virtual instrument that was created using NI-MAX.

•	The contents bridged to Option String (Cache, Range Check, Record Coercions,
Interchange Check, Query Instrument Status, and Driver Setup strings) are the same as
when using the specific driver. (go to page 19)

•	When the Cache, Range Check, Record Coercions, Interchange Check, Query Instrument
Status, and Driver Setup strings bridged to Option String are omitted, each default value is
the same as the one specified in the IVI Configuration’s [Driver Session] > [General] page.

Memo
The class driver references the logical name to search for the appropriate instrument
driver DLL (Software Module) and VISA address (Hardware Asset), and ultimately
invokes the kipwr Initialize With Options.vi function indirectly.

Programming Using Class Interfaces

IVI Instrument Driver Programming Guide (LabVIEW Edition) 37

Programming Using Class Interfaces

Setting the Channel Name

The IVI instrument driver was designed on the premise that, when supporting power sup-
plies, oscilloscopes, and so on, the instrument has multiple channels.

Therefore, many driver functions that operate instrument panel settings may require you to
specify the channel for the [channel name] parameter.

The figure shown above uses a class driver, and the channel name “Output0,” which can
only be applied to a particular instrument driver (the kipwr driver in this case) is specified.

Even when a channel name that depends on a particular instrument driver is specified for
the class driver function, instrument measurement is possible, but interchangeability is
spoiled.
For example, because “Output1” is the valid channel name for the AgN57xx instrument
driver, if “Output0” is the specified channel name, then you cannot switch the instrument
with AgN57xx without rewriting the program.

To actualize interchangeability in programming using class drivers, specify a virtual name
for the channel in IVI Configuration, and specify the virtual name for the [channel name] of
the function.

For example, in “Creating a Virtual Instrument” (go to page 24), we added the name
“Track_A” as a virtual name, and set it to convert into the physical name “Output0.” To
perform programming that does not depend on a model-specific instrument driver, specify
“Track_A” for [channel name] of the Configure Voltage Level.vi mentioned above.

If you have switched the instrument driver, you can continue operation just by changing
some items in IVI Configuration, without changing the application itself. (go to page 39)

KIKUSUI Electronics Corp.38

Programming Using Class Interfaces

Closing the Session

To close the instrument driver’s session, use Close.vi.

Memo
•	Do not manually edit the XML file (IviConfigurationStore.xml) where the IVI
Configuration setting information is stored.

•	The IVI Configuration is shared between all 32-bit/64-bit measurement applications and
all log-on users on the same PC.

Programming Using Class Interfaces

IVI Instrument Driver Programming Guide (LabVIEW Edition) 39

Programming Using Class Interfaces

Switching the Instrument

If you have switched the instrument, you can continue operation just by changing the Driver
Session of the virtual instrument (IVI Configuration).
You do not need to change the application itself.

Change the following three settings for Driver Session.

Item Setting

[Hardware] tab > [Hardware Assets] >
[Resource Descriptor]

VISA address to which the instrument is
connected

[Software] tab > [Software Module] Instrument driver to be used

[Virtual Names] tab > [Physical Names] Physical mapping destination name of
the virtual channel name

If you correctly set Driver Session according to the switched instrument, operation can con-
tinue without having to compile and link the application again.

Following the examples in this guide, if you switched the instrument from a Kikusui PWR-01
Series DC power supply (an instrument hosted by the kipwr instrument driver) to an Agilent
N5700 Series DC power supply (an instrument hosted by the AgN57xx driver), change the
[mySupply] settings as shown below.

Item Change

[Hardware] tab > [Hardware Assets] >
[Resource Descriptor]

VISA address to which the Kikusui
PWR-01 Series DC power supply is
connected

=> VISA address to which the Agilent
N5700 Series DC power supply is
connected

[Software] tab > [Software Module] “kipwr” => “AGN57xx”

[Virtual Names] tab > [Physical Names] “Output0” => “Output1”

Memo
•	The interchangeability feature using IVI class drivers does not guarantee the correct
operation of instruments before and after switching. Fully verify that your system cor-
rectly functions after switching the instruments.

